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On (a, b)-balancing numbers
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Dedicated to Professors K. Győry and A. Sárközy on their 70th birthdays

and Professors A. Pethő and J. Pintz on their 60th birthdays

Abstract. A positive integer n is called a balancing number if 1+ . . .+(n− 1) =

(n + 1) + · · · + (n + r) for some positive integer r. Balancing numbers and their gene-

ralizations have been investigated by several authors, from many aspects. In this paper

we introduce the concept of balancing numbers in arithmetic progressions, and prove

several effective finiteness and explicit results about them. In the proofs of our results,

among others, we combine Baker’s method, the modular method developed by Wiles

and others, a result of Bennett about the diophantine equation |axn − byn| = 1, the

Chabauty method and the theory of elliptic curves.

1. Introduction and main results

A positive integer n is called a balancing number (see [2] and [14]) if

1 + · · ·+ (n− 1) = (n+ 1) + · · ·+ (n+ r)

holds for some positive integer r. The sequence of balancing numbers is denoted

by Bm (m = 1, 2, . . . ). As one can easily check, we have B1 = 6 and B2 = 35.
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Note that by a result of Behera and Panda [2], we have

Bm+1 = 6Bm −Bm−1 (m > 1).

In particular, there are infinitely many balancing numbers.

The literature of balancing numbers is very rich. In [26] and [27] Liptai

proved that there are no Fibonacci and Lucas balancing numbers, respectively.

Later, Szalay [39] derived the same results by a different method.

In [28] Liptai, Luca, Pintér and Szalay generalized the concept of ba-

lancing numbers in the following way. Let y, k, l be fixed positive integers with

y ≥ 4. A positive integer x with x ≤ y−2 is called a (k, l)-power numerical center

for y if

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l.

In [28] several effective and ineffective finiteness results were proved for (k, l)-

power numerical centers.

Recently, the “balancing” property has been investigated in recurrence sequ-

ences (see [6]). In the present paper we extend the concept of balancing numbers

to arithmetic progressions. Let a > 0 and b ≥ 0 be coprime integers. If for some

positive integers n and r we have

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

then we say that an + b is an (a, b)-balancing number. The sequence of (a, b)-

balancing numbers is denoted by B
(a,b)
m (m = 1, 2, . . . ). We mention that since

B
(1,0)
m = Bm for all m, we obtain a generalization of balancing numbers.

We prove several effective finiteness and explicit results concerning polyno-

mial values in the sequences B
(a,b)
m . That is, we consider the equation

B(a,b)
m = f(x) (1)

in integers m and x with m ≥ 1, where f is some polynomial with rational

coefficients, taking only integral values at integers. From this point on, when

we refer to equation (1) we always assume that a and b are arbitrary, but fixed

coprime integers such that a > 0 and b ≥ 0.

Our first result is the following.

Theorem 1. Let f(x) be a monic polynomial with integer coefficients, of

degree ≥ 2. If a is odd, then for the solutions of (1) we have max(m, |x|) <

c0(f, a, b), where c0(f, a, b) is an effectively computable constant depending only

on a, b and f .
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Our next result concerns the case where f(x) = xl with some l ≥ 2. In this

case solving equation (1) is equivalent to finding (a, b)-balancing numbers which

are perfect powers.

Theorem 2. If a2 − 4ab − 4b2 = 1, then there is no perfect power (a, b)-

balancing number.

Remark 1. One can easily check that the equation a2 − 4ab − 4b2 = 1 has

infinitely many solutions in integers a, b with a > 0, b ≥ 0. Hence Theorem 2

completely solves the proposed problem for infinitely many pairs (a, b).

The following theorem takes up the problem where the polynomial f(x) in (1)

has some combinatorial meaning. More precisely, we investigate binomial coef-

ficients
(
x
k

)
, products of consecutive integers, power sums and alternating power

sums. For positive integers k, x let

Πk(x) = x(x+ 1) . . . (x+ k − 1),

Sk(x) = 1k + 2k + · · ·+ (x− 1)k,

Tk(x) = −1k + 2k − · · ·+ (−1)x−1(x− 1)k.

We mention that Πk(x), Sk(x) and Tk(x) are polynomials in x, of degrees k, k+1

and k, respectively. Note that the coefficients of
(
x
k

)
, Sk(x) and Tk(x) are not

integers. Further, in the case f(x) = Πk(x) Theorem 1 yields a finiteness result,

however, only for the odd values of the parameter a.

For these combinatorial choices of f(x) our next statement yields a bound

for the solutions of (1), without any assumptions for the parameters a and b.

Theorem 3. Let k ≥ 2 and f(x) be one of the polynomials
(
x
k

)
, Πk(x),

Sk−1(x), Tk(x). Then the solutions of equation (1) satisfymax(m, |x|)<c1(a, b, k),

where c1(a, b, k) is an effectively computable constant depending only on a, b

and k.

In our final result, under the assumption a2 − 4ab− 4b2 = 1, we provide the

complete solution of (1) with the above choices of f(x), for some small values of

the parameter k. More precisely, we consider all cases where (1) can be reduced

to an equation of genus 1. Further, we also solve a particular case of (1) which

can be reduced to the resolution of a genus 2 equation.

Theorem 4. Suppose that a2−4ab−4b2 = 1. Let f(x)∈{(x2
)
,
(
x
3

)
,
(
x
4

)
,Π2(x),

Π3(x),Π4(x), S1(x), S2(x), S3(x), S5(x)}. Then the solutions (m,x) of equation

(1) are those contained in Table 1. For the corresponding parameter values we

have (a, b) = (1, 0) in all cases.
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f(x) Solutions (m,x) of (1)(
x
2

)
(1,−3), (1, 4)(

x
3

)
(2,−5), (2, 7)(

x
4

)
(2,−4), (2, 7)

Π2(x) (1,−3), (1, 2)

Π3(x) (1,−3), (1, 1)

Π4(x) ∅
S1(x) (1,−4), (1, 3)

S2(x) (3,−8), (3, 9), (5,−27), (5, 28)

S3(x) ∅
S5(x) ∅

Table 1

Remark 2. We considered some other related equations that lead to genus 2

equations. However, because of certain technical difficulties, we could not solve

them by the Chabauty method. We checked that under the assumption a2−4ab−
4b2 = 1 equation (1) has no “small” solutions (i.e. solutions with |x| ≤ 10000) in

cases f(x) ∈ {(
x
6

)
,
(
x
8

)
,Π6(x),Π8(x), S7(x)

}
.

2. Proof of the theorems

For the proof of our theorems we need several lemmas. The first one is of

principal importance, because it opens access to the application of deep methods.

Lemma 1. For any a > 0, b ≥ 0 and m ≥ 1

y2 − 8
(
B(a,b)

m

)2

= a2 − 4ab− 4b2 (2)

holds with some y ∈ Z.
Proof. Using the definition of B

(a,b)
m and writing B

(a,b)
m = an+ b, a simple

calculation shows that

ar2 + (a+ 2B(a,b)
m )r − (n− 1)(B(a,b)

m + b) = 0.

The left hand side of this equality is a polynomial in r of degree two. Thus its

discriminant must be a square in Z. Since the discriminant in question is given by

8
(
B(a,b)

m

)2

+ a2 − 4ab− 4b2,

the statement follows. ¤
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A polynomial f(x) with complex coefficients is called non-degenerate if it has

at least three zeros of odd multiplicities. For the proof of Theorem 1 we need the

following two lemmas. The next result is due to Brindza [8].

Lemma 2. Let B be a non-zero rational number and g(x) ∈ Q[x] a non-

degenerate polynomial. Then for the integral solutions x, y of the hyperelliptic

equation

g(x) = By2

we have max(|x|, |y|) < c2(B, g), where c2(B, g) is an effectively computable cons-

tant depending only on B and g.

If p is a prime and t is an integer, then by pα‖t we mean that pα|t but

pα+1 - t. The following result of Brindza and Pintér [9] provides information

on the structure of zeros of certain polynomials.

Lemma 3. Let P (X) = anX
n+ · · ·+a1X+a0 be a polynomial with integral

coefficients, for which a0 is odd, 4|ai (i = 1, . . . , n) and 23‖an. Then every zero

of P is simple.

Proof of Theorem 1. Using Lemma 1, from (1) we get the equation

8f2(x) + a2 − 4ab− 4b2 = y2.

It is easy to see that since a is odd, the left hand side of the above equation is

a polynomial satisfying the conditions of Lemma 3. So, by Lemma 3 we know

that the zeros of the left hand side are simple. Hence, by Lemma 2 the theorem

follows. ¤

To prove Theorem 2, we need the following deep result of Bennett [3] about

binomial Thue equations. Note that recently this result has been considerably

generalized in certain sense (see e.g. the papers [4], [5] and the references given

there). However, the following lemma is sufficient for our present purposes.

Lemma 4. If A, B and n are integers with AB 6= 0 and n ≥ 3, then the

equation

|Axn −Byn| = 1

has at most one solution in positive integers x, y.

Proof of Theorem 2. Using Lemma 1 and substituting B
(a,b)
m = xl into

(2), by a2 − 4ab− 4b2 = 1 we obtain

y2 − 8x2l = 1, (3)



490 Tünde Kovács, Kálmán Liptai and Péter Olajos

with some y ∈ Z. Rewrite (3) as

y2 − 1 = 8xt,

where t = 2l with t ≥ 4, as l ≥ 2.

Obviously, y must be odd. Introducing the notation y = 2k + 1, we get

k(k + 1) = 2xt.

Thus we have k = 2αxt
1 and k + 1 = 2βxt

2 with αβ = 0, α + β = 1, where x1, x2

are some positive integers. This yields

|2βxt
2 − 2αxt

1| = 1. (4)

Observe that x1 = x2 = 1 is a solution to (4). Hence by Lemma 4 there are

no other solutions. Thus the only possible value for x is x = 1, which yields

B
(a,b)
m = 1. Since this is impossible, the theorem follows. ¤

For the proof of Theorem 3, we need three more lemmas. The first result is

due to Ping-Zhi [29].

Lemma 5. Let k be an integer with k ≥ 5 and B an algebraic number.

Then apart form the cases where k = 6, B = 10±7
√
7

1215 , the polynomial
(
x
k

)
+ B is

non-degenerate.

Let Bk(x) and Ek(x) denote the kth Bernoulli and Euler polynomials, respec-

tively (see e.g. [33]). The next lemmas are due to Pintér and Rakaczki [31]

and Rakaczki [34], respectively.

Lemma 6. If k is an integer with k ≥ 5 and A, B are complex numbers

with B 6= 0, then the polynomial (Bk(x) +A)2 +B is non-degenerate.

Lemma 7. If k is an integer with k ≥ 5 and A,B are complex numbers with

B 6= 0, then the polynomial (Ek(x) +A)2 +B is non-degenerate.

Proof of Theorem 3. Assume first that k ≥ 5. Using Lemma 1 and (1),

we get the equation

y2 = 8 (f(x))
2 − C(a, b), (5)

where C(a, b) = −(a2 − 4ab − 4b2). Observe that C(a, b) 6= 0. We consider the

possible choices for f(x) in turn.

Let f(x) =
(
x
k

)
. Factorizing the right hand side of (5), we obtain

y2 = 8

(
f(x) +

√
C(a, b)

8

)(
f(x)−

√
C(a, b)

8

)
. (6)
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Since C(a, b) 6= 0, the zeros of the factors on the right hand side of equation (6)

are distinct. Moreover, as one can readily check, ±
√

C(a,b)
8 6= 10±7

√
7

1215 , since

C(a, b) ∈ Z. Thus, by Lemmas 2 and 5 the theorem follows in this case.

Now assume that f(x) = Πk(x). In this case Lemma 1 and (1) give

y2 = 8 (Πk(x))
2 − C(a, b).

Since Πk(x) = k!
(
x+k−1

k

)
, we get

y2 = 8(k!)2

((
x+ k − 1

k

)
+

√
C(a, b)

8(k!)2

)((
x+ k − 1

k

)
−
√

C(a, b)

8(k!)2

)
.

Since C(a, b) 6= 0, the zeros of the factors on the right hand side are distinct again.

Moreover, it is easy to see that ±
√

C(a,b)
8k!2 6= 10±7

√
7

1215 . Hence using Lemmas 2 and 5

the theorem follows also in this case.

Next let f(x) = Sk(x). It is well-known that

Sk−1(x) =
1

k
(Bk(x)−Bk(0)) .

Then by Lemma 1 and (1) again, we obtain that

y2 =
8

k2

(
(Bk(x)−Bk(0))

2 − k2C(a, b)

8

)
.

Applying Lemma 6 with A = −Bk(0) and B = −k2C(a,b)
8 6= 0, we see that the

right hand side of this equation is non-degenerate. Thus, the theorem follows

from Lemma 2.

Finally, let f(x) = Tk(x). It is also well-known that for all k ∈ N

Tk(x) =
1

2

(
Ek(x) + (−1)x+1Ek(0)

)

is valid. Lemma 1 and (1) now yield

y2 = 2

(
(Ek(x) + (−1)x+1Ek(0))

2 − C(a, b)

2

)
.

Applying Lemma 7 with A = (−1)x+1Ek(0) and B = −C(a,b)
2 6= 0, we get that

the right hand side of the above equation is non-degenerate. Again, the theorem

follows from Lemma 2.
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Consider now the cases when 2 ≤ k ≤ 4. In all cases we get that the

polynomial on the right hand side of (5) is non-degenerate because its discriminant

is non-zero. We consider only one example, all the other cases can be handled

similarly.

Let f(x) =
(
x
2

)
. In this case the discriminant of the polynomial on the right

hand side of (5) is D := −256C(a, b)2(8C(a, b) − 1). Since C(a, b) is a non-zero

integer, we get D 6= 0, indeed. Therefore, the polynomial on the right side of (5)

is non-degenerate, and by Lemma 2 the theorem follows. ¤

As it was mentioned already, in our numerical results we consider all cases

with the above choices of f(x) and with a2 − 4ab − 4b2 = 1, where (1) can

be reduced to an equation of genus 1. Such equations can be handled by a

method developed by Stroeker, Tzanakis [36] and independently by Gebel,

Pethő, Zimmer [16]. We mention that a similar approach has been used to

solve several combinatorial Diophantine equations of different types, for example

in [17], [18], [20], [21], [24], [25], [30], [32], [38], [42], [43]. Further, we also

solve a particular case of (1) which can be reduced to a genus 2 equation. To

solve this equation, we shall use the Chabauty method by the help of explicit

techniques developed by Bruin. We note that the Chabauty method has already

been successfully used to solve certain other combinatorial Diophantine equations,

see e.g. the corresponding results in the papers [13], [19], [22], [23], [35], [40] and

the references given there.

Proof of Theorem 4. Using Lemma 1 and the assumption a2 − 4ab −
4b2 = 1, equation (1) can be written as

y2 = 8f(x)2 + 1. (7)

Actually, we solve equation (7) for all the cases of f(x) listed in Theorem 4. We

prove that the solutions are those contained in Table 2. Having the solutions

of (7), the solutions of the original equation (1) can be determined with simple

calculations.

As it will be clear from the presentation, it is worth to split the resolution

of (10) into three parts. Assume first that f(x) ∈ {(
x
3

)
,Π3(x), S2(x)

}
. Then the

right hand side of equation (7) can be transformed into a polynomial of degree 3.

As the computations are similar in all cases, we consider only one example. Let

f(x) = S2(x). Then (7) is given by

y2 = 8(S2(x))
2 + 1.
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f(x) Solutions (x, y) of (7)(
x
2

)
(−3,±17), (−1,±3), (0,±1), (1,±1), (2,±3), (4,±17)(

x
3

)
(0,±1), (1,±1), (2,±1), (−1,±3), (3,±3), (−5,±99), (7,±99)

(
x
4

) (−4,±99), (−1,±3), (0,±1), (1,±1),

(2,±1), (3,±1), (4,±3), (7,±99)

Π2(x) (−3,±17), (−1,±1), (0,±1), (2,±17)

Π3(x) (−3,±17), (−1,±1), (0,±1), (1,±17)

Π4(x) (−3,±1), (−2,±1), (−1,±1), (0,±1)

S1(x) (−4,±17), (−2,±3), (−1,±1), (0,±1), (1,±3), (3,±17)

S2(x)
(−27,±19601), (−8,±577), (−1,±3), (0,±1),

(1,±1), (2,±3), (9,±577), (28,±19601)

S3(x) (−1,±3), (0,±1), (1,±1), (2,±3)

S5(x) (−1,±3), (0,±1), (1,±1), (2,±3)

Table 2

Using the well-known fact S2(x) =
x(x−1)(2x−1)

6 , we get

y2 =
32x6 − 96x5 + 104x4 − 48x3 + 8x2 + 36

36
.

This leads to the elliptic equation

Y 2 = X3 + 2X2 + 576,

where X = 8(x2 − x), Y = 24y. One can compute the integer solutions of

this equation with the procedure IntegralPoints of Magma [7]. Note that the

procedure is based upon a method developed by Gebel, Pethő, Zimmer [16]

and Stroeker, Tzanakis [36]. Following the substitutions backwards, we can

determine the solutions x, y of the equation (7). The solutions are exactly the

ones listed in Table 2. In all the other cases we get the solutions of (7) by a

similar calculation.

Assume next that f(x) ∈ {(
x
2

)
,
(
x
4

)
,Π2(x),Π4(x), S1(x), S3(x)

}
. Then the

right hand side of equation (7) can be transformed into a polynomial of degree 4.

Since the different choices of f can be handled similarly, we consider only one

example, again. Let f(x) = Π4(x). Then (7) has the form

y2 = 8(Π4(x))
2 + 1.
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Using Π4(x) = x(x+1)(x+2)(x+3), introducing the notation X = x2+3x, this

yields

y2 = 8X4 + 32X3 + 32X2 + 1.

This equation is of genus 1 and can be solved using the Magma procedure

IntegralQuarticPoints. We note that this procedure is based upon results

of Stroeker and Tzanakis [37] and Tzanakis [41]. Hence, we can find all

integral solutions of equation (7), again. The solutions (x, y) are exactly the ones

listed in Table 2. All the other cases are similar.

Finally, assume that f(x) = S5(x). In this case, equation (7) has the form

y2 = 8(S5(x))
2 + 1.

Hence, using the well-known assertion S5(x) =
1
12 (x−1)2x2(2x2−2x−1), we get

Y 2 = 8X6 − 8X5 + 2X4 + 36, (8)

where X = x2 − x and Y = 6y. Equation (8) defines a curve of genus 2 over Q.
All its solutions can be determined by applying recent explicit Chabauty techni-

ques due to Bruin. Here we only indicate the main steps of the method without

explaining the background theory. For details we refer to the papers of Bruin

[10], [11], [12], and the references given there.

Since the Jacobian of the hyperelliptic curve determined by (8) has Mordell-

Weil rank 3, the classical Chabauty-type method (see e.g. [15]) does not suffice to

find the rational points on (8). To deal with this situation, we apply the elliptic

Chabauty method, combined with Magma, following [12]. In the first step, we

factorize the right-hand side of equation (8) over the number field K = Q(α)
where α =

√−2. For later use, we mention that {1, α} is an integral basis of K,

and that the ring of integers OK of K is a Euclidean ring. We obtain

Y 2 = (2αX3 − αX2 + 6)(−2αX3 + αX2 + 6). (9)

This yields that

δZ2 = 2αX3 − αX2 + 6 (10)

is valid with some δ, Z ∈ OK , where δ is square-free in OK . Observe that (9) and

(10) imply that

δW 2 = −2αX3 + αX2 + 6

is also valid with some W ∈ OK . Hence δ divides (2αX3−αX2+6)+(−2αX3+

αX2 + 6) in OK , that is δ|12. Thus, using that the only units in OK are ±1,
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α2 = −2, and 3 is a prime in OK , we get that δ = ±αt13t2 with t1, t2 ∈ {0, 1}.
Taking norms on both sides of (10), we obtain that δ ∈ {−3,−1, 1, 3}. In the

cases δ = ±1, simple computations show that equation (10) has no solutions. We

illustrate this only for δ = 1. Write Z = Z1 + αZ2 in (10) with Z1, Z2 ∈ Z. Then
comparing the coefficients of 1 and α on both sides of (10), we get Z2

1 − 2Z2
2 = 6.

However, this is impossible modulo 16. The case of δ = −1 can be excluded in a

similar way.

Let now δ = 3. Equation (10) defines a genus 1 curve over K that can be

transformed into a Weierstrass-form elliptic curve E over K by the help of its

point P = (2, α+ 2). A minimal model of E is given by

ME : v2 = u3 + 6u+ (4α− 1296).

Note that all these curves, together with the transformations among them can be

handled by Magma. Now, as X, Y are known to be rational coordinates of the

hyperelliptic curve defined by (8), one can apply the elliptic Chabauty method to

solve (8) completely (following Bruin [12]). To have the method work, the rank

of ME(K) should be strictly less than the degree of K (which is 2). It turns

out that the rank of ME(K) is 1, so the elliptic Chabauty method is applicable.

The procedure PseudoMordellWeilGroup of Magma is able to find a subgroup

G of ME(K) of finite odd index. Then using the procedure Chabauty with the

prime 59, we get that (X,Y ) = (2,±18) are the only solutions for equation (8)

in this case. Substituting back, we obtain that the corresponding solutions to

equation (7) are (x, y) = (0,±1), (1,±1).

In case of δ = −3 we can follow a similar argument. The rank of the corres-

ponding elliptic curve is 1 again, so we can proceed as previously. The solutions

for equation (8) can be found by using the prime 7 with Aux:=19 in the procedure

Chabauty of Magma. We obtain that all solutions of equation (8) are given by

(X,Y ) = (0,±6) in this case. Following the substitutions backwards, we get that

the corresponding solutions to equation (7) are (x, y) = (−1,±3), (2,±3).

From the solutions of equation (7), using (1) and B
(a,b)
m = an+ b with some

integer n > 0, the parameters a, b,m can be found by simple calculations. Thus

we obtain all solutions (m,x) of (1). They are exactly the ones listed in Table 1,

all corresponding to the parameters (a, b) = (1, 0). ¤
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[6] A. Bérczes, K. Liptai and I. Pink, On balancing recurrence sequences, Fibonacci Quart.
(to appear).

[7] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user langu-
age, J. Symbolic Comput. 24 (1997), 235–265.

[8] B. Brindza, On S-integral solutions of the equation ym = f(x), Acta Math. Hungar. 44
(1984), 133–139.
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[28] K. Liptai, F. Luca, Á. Pintér and L. Szalay, Generalized balancing numbers, Indag.
Math. N. S. 20 (2009), 87–100.

[29] Y. Ping-Zhi, On a special diophantine equation a
(x
n

)
= byr + c, Publ. Math. Debrecen 44

(1994), 137–143.
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TÜNDE KOVÁCS

INSTITUTE OF MATHEMATICS

UNIVERSITY OF DEBRECEN

H-4010 DEBRECEN, P.O. BOX 12

HUNGARY

E-mail: tkovacs@math.klte.hu
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