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Abstract. The Diophantine equation F k
1 + F k

2 + · · ·+ F k
n−1 = F l

n+1 + F l
n+2 + · · ·+ F l

n+r in

positive integers n, r, k, l with n ≥ 2 is studied where Fn is the nth term of the Fibonacci
sequence.

1. Introduction

As usual {Fn}∞n=0 denotes the sequence of Fibonacci numbers and {Ln}∞n=0 the sequence of
Lucas numbers. It is well known that the recurrence relations of these two sequences are

F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn,

L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln,

and their Binet forms are

Fn =
αn − βn

α− β
and Ln = αn + βn, (1.1)

respectively, where α = (1 +
√

5)/2 and β = (1 −
√

5)/2. In the sequel, we investigate the
Diophantine equation

F k1 + F k2 + · · ·+ F kn−1 = F ln+1 + F ln+2 + · · ·+ F ln+r (1.2)

in positive integers n, r, k, l with n ≥ 2. Panda [4] has treated the special case k = l = 1.
The authors believe that the following conjecture is true.

Conjecture 1.1. The only quadruple (n, r, k, l) = (4, 3, 8, 2) of positive integers satisfy equa-
tion (1.2).

We validate this claim to some extent by showing that several particular cases of (1.2) do
not possess any solution.

2. Auxiliary results

The results presented in this section are required to establish certain claims on Conjecture
1.1.

The following are some identities on Fibonacci numbers.

Lemma 2.1. (a)
∑n

k=1 Fk = Fn+2 − 1,

(b)
∑n

k=1 F
2
k = FnFn+1,

(c)
∑n

k=1 F
3
k = F3n+2+6·(−1)n−1Fn−1+5

10 ,

(d) Fn ≤ Ln, and equality holds if and only if n = 1,
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(e) F2n = Fn(Fn+1 + Fn−1),

(f) F 2
n = L2n−2(−1)n

5 ,

(g) F 3
n = F3n−3(−1)nFn

5 .

Proof. The proofs of these statements are well-known. However, statements (a) to (d) can be
proved, for instance, by induction (especially, (d) appears in [1]). The statements (e) to (g)
can be verified using the Binet formulae for Ln and Fn given in (1.1). �

The following result, which is a part of Lemma 5 in [3], gives upper and lower bounds for
Fibonacci numbers in terms of powers of α.

Lemma 2.2. Let u0 be a positive integer. For i = 1, 2 put δi = logα
((

1 + (−1)i−1
(
|β|
α

)u0
)
/
√

5
)
.

Then for all integers u ≥ u0 inequalities αu+δ2 ≤ Fu ≤ αu+δ1.

In order to make the application of Lemma 2.2 more convenient, we take u0 ≥ 6 and get
the following result.

Corollary 2.3. If u0 ≥ 6, then δ1 < −1.66 and δ2 > −1.68.

The following result, which is Lemma 6 in [3], gives upper bounds for linear combinations
of powers of α and 1 in terms of powers of α.

Lemma 2.4. Suppose that a > 0 and b ≥ 0 are real numbers and u0 is a positive real number.
Then aαu + b ≤ αu+κ holds for any u ≥ u0 where κ = logα

(
a+ b

αu0

)
.

3. The results

In this section, we present some results to support Conjecture 1.1. The first result deals
with the non-existence of solutions of (1.2) when k ≤ l.

Theorem 3.1. The Diophantine equation F k1 + F k2 + · · ·+ F kn−1 = F ln+1 + F ln+2 + · · ·+ F ln+r

has no solution in positive integers n and r with n ≥ 2 if k ≤ l.

Proof. For k ≤ l, using
F1 + F2 + · · ·+ Fn−1 = Fn+1 − 1

we get

F k1 + F k2 + · · ·+ F kn−1 ≤ (F1 + F2 + · · ·+ Fn−1)k = (Fn+1 − 1)k < F kn+1 ≤ F ln+1,

showing that (1.2) has no solution in the positive integers n and r with n ≥ 2 if k ≤ l. �

Even if k > l, it can be proved that many particular cases of (1.2) do not possess any
solution. The following result ascertains this claim when k = 2 and l = 1.

Theorem 3.2. The Diophantine equation F 2
1 + F 2

2 + · · ·+ F 2
n−1 = Fn+1 + Fn+2 + · · ·+ Fn+r

has no solution in positive integers n and r with n ≥ 2.

Proof. By virtue of Lemma 2.1(a) and (b), the equation

F 2
1 + F 2

2 + · · ·+ F 2
n−1 = Fn+1 + Fn+2 + · · ·+ Fn+r

is equivalent to
Fn−1Fn + Fn+2 = Fn+r+2. (3.1)
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Since Fn−1Fn + Fn+2 is not a Fibonacci number when n = 2, 3, . . . , 6, we can safely assume
that n ≥ 7. Using Corollary 2.3, we find the upper and lower bounds for both sides of (3.1).
Firstly, we observe that

Fn−1Fn + Fn+2 > Fn−1Fn > αn−1.68αn−1−1.68 = α2n−4.36. (3.2)

On the other hand,

Fn−1Fn + Fn+2 < αn−1.66αn−1−1.66 + αn+2−1.66 = αn+0.34(αn−4.66 + 1). (3.3)

Using Lemma 2.4 with a = b = 1, we obtain κ < 0.68, and by virtue of (3.3),

Fn−1Fn + Fn+2 < αn+0.34(αn−4.66 + 1) < αn+0.34αn−4.66+0.68 = α2n−3.64. (3.4)

Again, by Corollary 2.3,

αn+r+0.32 = αn+r+2−1.68 < Fn+r+2 < αn+r+2−1.66 = αn+r+0.34. (3.5)

Thus, if (3.1) holds for the positive integers n and r, then by virtue of (3.2), (3.4) and (3.5),
we get

max{2n− 4.36 , n+ r + 0.32} < min{2n− 3.64 , n+ r + 0.34},
which yields the inequalities

2n− 4.36 < n+ r + 0.34
and

n+ r + 0.32 < 2n− 3.64.
Hence, the positive integers n and r satisfy

n− 4.7 < r < n− 3.96,

which yield r = n− 4. Thus (3.1) reduces to

Fn−1Fn + Fn+2 = F2n−2. (3.6)

if n ≥ 7. But, by Lemma 2.1(e), (3.6) simplifies to

Fn+2 = Fn−1Fn−2. (3.7)

It is easy to see that (3.7) is not true for n = 8, 9, 10. If n > 10, i.e., n+2 > 12 then by virtue
of the primitive divisor theorem [2], Fn+2 has a prime factor that does not divide any of Fn−1

and Fn−2. Hence (3.7) is not satisfied for any n ≥ 7 and therefore (3.1) has no solution. �

The following result ascertains that there is no solution to (1.2) when k = 3 and l = 1.

Theorem 3.3. The Diophantine equation F 3
1 + F 3

2 + · · ·+ F 3
n−1 = Fn+1 + Fn+2 + · · ·+ Fn+r

has no solution in positive integers n and r with n ≥ 2.

Proof. By virtue of Lemma 2.1(a), the equation

F 3
1 + F 3

2 + · · ·+ F 3
n−1 = Fn+1 + Fn+2 + · · ·+ Fn+r

reduces to
F 3

1 + F 3
2 + · · ·+ F 3

n−1 = Fn+r+2 − Fn+2.

Since F 3
1 + F 3

2 + · · · + F 3
n−1 + Fn+2 does not yield a Fibonacci number when n = 2, 3, 4,

without loss of generality, we may assume that n ≥ 5. Further, by Lemma 2.1(c), the last
equation is equivalent to

F3n+2 + 10Fn+2 + 6(−1)n−1Fn−1 + 5 = 10Fn+r+2. (3.8)
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We apply Corollary 2.3 and get the upper and lower bounds for both sides of (3.8) as follows:

F3n+2 + 10Fn+2 + 6(−1)n−1Fn−1 + 5 > F3n+2 > α3n+2−1.68 = α3n+0.32, (3.9)

while

F3n+2 + 10Fn+2 + 6(−1)n−1Fn−1 + 5 < F3n+2 + 21Fn+2 < α3n+2−1.66 + 21αn+2−1.66. (3.10)

Since logα 21 < 6.37, we obtain

α3n+2−1.66 + 21αn+2−1.66 < α3n+0.34 + αn+6.71 = αn+6.71(α2n−6.37 + 1). (3.11)

Now n ≥ 5 entails 2n − 6.37 > 3. By Lemma 2.4 with a = b = 1, we obtain κ < 0.45 and
subsequently, we have

αn+6.71(α2n−6.37 + 1) < αn+6.71α2n−6.37+0.45 = α3n+0.79. (3.12)

Using (3.9), (3.10), (3.11) and (3.12) we get

α3n+0.32 < F3n+2 + 10Fn+2 + 6(−1)n−1Fn−1 + 5 < α3n+0.79. (3.13)

Similarly, since 4.78 < logα 10 < 4.79, we get

10Fn+r+2 > α4.78αn+r+2−1.68 = αn+r+5.1 (3.14)

and
10Fn+r+2 < α4.79αn+r+2−1.66 = αn+r+5.13. (3.15)

We now combine (3.14) and (3.15) and get

αn+r+5.1 < 10Fn+r+2 < αn+r+5.13. (3.16)

In view of (3.8), (3.13) and (3.16), we have the system of inequalities

n+ r + 5.1 < 3n+ 0.79

and
3n+ 0.32 < n+ r + 5.13,

yielding
2n− 4.81 < r < 2n− 4.31,

which is impossible since n and r are integers. �

Equation (1.2) does not exhibit any solution even if k = 3 and l = 2. The following result
ascertains this fact.

Theorem 3.4. The Diophantine equation F 3
1 + F 3

2 + · · ·+ F 3
n−1 = F 2

n+1 + F 2
n+2 + · · ·+ F 2

n+r

has no solution in positive integers n and r with n ≥ 2.

Proof. Application of Lemma 2.1(b) and (c) converts the equation

F 3
1 + F 3

2 + · · ·+ F 3
n−1 = F 2

n+1 + F 2
n+2 + · · ·+ F 2

n+r

to
F3n+2 + 10FnFn+1 + 6(−1)n−1Fn−1 + 5 = 10Fn+rFn+r+1. (3.17)

It is easy to check that the above equation has no solution if n = 2, 3, . . . , 6. Supposing
n ≥ 7, observing that 4.78 < logα 10 < 4.79, and using Lemma 2.4 and Corollary 2.3 we find

α2n+2r+2.42 < 10Fn+rFn+r+1 < α2n+2r+2.47.

On the other hand, by (3.9)

F3n+2 + 10FnFn+1 + 6(−1)n−1Fn−1 + 5 > F3n+2 > α3n+0.32,
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while

F3n+2 + 10FnFn+1 + 6(−1)n−1Fn−1 + 5 < F3n+2 + 21F 2
n+1 <

< α3n+2−1.66 + α6.37α2(n+1−1.66) = α2n+5.05(αn−4.71 + 1).

Now n− 4.71 > 3, and by Lemma 2.4 with a = b = 1, we have κ < 0.68 and hence

α2n+5.05(αn−4.71 + 1) < α3n+1.02.

Comparing the upper and lower bounds of both sides of (3.17), we arrive at the system of
inequalities

2n+ 2r + 2.42 < 3n+ 1.02

and

3n+ 0.32 < 2n+ 2r + 2.47;

the last two inequalities imply

2r + 1.4 < n < 2r + 2.15.

Thus n = 2r + 2, and our problem reduces to proving that for no positive integer r, the
equation

F 3
1 + F 3

2 + · · ·+ F 3
2r+1 = F 2

2r+3 + F 2
2r+4 + · · ·+ F 2

3r+2

is satisfied. For this, it is sufficient to show that for every positive integer r,

F 3
1 + F 3

2 + · · ·+ F 3
2r+1 < F 2

2r+3 + F 2
2r+4 + · · ·+ F 2

3r+2. (3.18)

We prove (3.18) by induction. Since

F 3
1 + F 3

2 + F 3
3 = 10 < 25 = F 2

5 ,

it is sufficient to prove that

F 3
2r+2 + F 3

2r+3 < F 2
3r+3 + F 2

3r+4 + F 2
3r+5 − F 2

2r+3 − F 2
2r+4;

by Lemma 2.1(d), (f) and (g), the last inequality is equivalent to

F6r+9 + F6r+6 + 3F2r+1 < L6r+10 + L6r+8 + L6r+6 − L4r+8 − L4r+6 ± 2. (3.19)

Clearly, the combination of F6r+6 < L6r+6,

F6r+9 < L6r+9 = L6r+10 − L6r+8 < L6r+10 − L4r+8

and

3F2r+1 < F2r+5 < L2r+5 < L6r+6 = L6r+7 − L6r+5 <

< L6r+7 − L4r+6 < L6r+8 − L4r+6 − 2

justifies (3.19). �

Acknowledgement. It is pleasure to thank the anonymous referee for his valuable comments
and suggestions which resulted in an improved presentation of the paper.
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